cache()与persist():
会被重复使用的(但是)不能太大的RDD需要cache。cache 只使用 memory,写磁盘的话那就叫 checkpoint 了。 哪些 RDD 需要 checkpoint?运算时间很长或运算量太大才能得到的 RDD,computing chain 过长或依赖其他 RDD 很多的 RDD。 实际上,将 ShuffleMapTask 的输出结果存放到本地磁盘也算是 checkpoint,只不过这个 checkpoint 的主要目的是去 partition 输出数据。 cache 机制是每计算出一个要 cache 的 partition 就直接将其 cache 到内存了。但 checkpoint 没有使用这种第一次计算得到就存储的方法,而是等到 job 结束后另外启动专门的 job 去完成 checkpoint 。 也就是说需要 checkpoint 的 RDD 会被计算两次。因此,在使用 rdd.checkpoint() 的时候,建议加上 rdd.cache(), 这样第二次运行的 job 就不用再去计算该 rdd 了,直接读取 cache 写磁盘。cache 与 checkpoint 的区别: 关于这个问题,Tathagata Das 有一段回答: There is a significant difference between cache and checkpoint.Cache materializes the RDD and keeps it in memory and/or disk(其实只有 memory). But the lineage(也就是 computing chain) of RDD (that is, seq of operations that generated the RDD) will be remembered, so that if there are node failures and parts of the cached RDDs are lost, they can be regenerated. However, checkpoint saves the RDD to an HDFS file and actually forgets the lineage completely. This is allows long lineages to be truncated and the data to be saved reliably in HDFS (which is naturally fault tolerant by replication). persist()与checkpoint()深入一点讨论,rdd.persist(StorageLevel.DISK_ONLY) 与 checkpoint 也有区别。前者虽然可以将 RDD 的 partition 持久化到磁盘,但该 partition 由 blockManager 管理。一旦 driver program 执行结束,也就是 executor 所在进程 CoarseGrainedExecutorBackend stop,blockManager 也会 stop,被 cache 到磁盘上的 RDD 也会被清空(整个 blockManager 使用的 local 文件夹被删除)。而 checkpoint 将 RDD 持久化到 HDFS 或本地文件夹,如果不被手动 remove 掉( 话说怎么 remove checkpoint 过的 RDD? ),是一直存在的,也就是说可以被下一个 driver program 使用,而 cached RDD 不能被其他 dirver program 使用。